Development of Subaqueous Soil Interpretations

Mark Stolt
Christina Pruett
Alex Salisbury
University of Rhode Island
Specific Subaqueous Soil Resource Based Interpretations

- Seagrass Restoration
- Crab Habitat
- Clam Stocking
- Sustainable Production Clam, Oyster, and Scallop
- Nutrient Reduction
- Pathogens Pfesteria Cyst Residence Sites
- Benthic Preservation Site Identification
- Wildlife Management
- Habitat Protection for Horseshoe Crab and Diamondback Terrapin

- Dredging Island Creation
- Tidal Marsh Protection and Creation
- Bathymetric Map
- Navigational Channel Creation/Maintenance
- Effects of Dredging on Benthic Ecology
- Off Site Disposal of Dredge Spoil
- Acid-Sulfate Weathering Hazards
- Dune Maintenance and Replenishment
- Carbon Sequestration
Subaqueous Soil Interpretations

- Upland placement of dredged soil material
- Shellfish management
- SAV restoration
- Carbon sequestration
- Contaminant Accumulations
Upland Placement of Estuarine Dredged Material

• Benefits and Uses
 – Beach replenishment
 – Eelgrass (SAV) bed restoration
 – Marketable topsoil
 – Island creation

• Hazards
 – Heavy Metals
 – Toxins (organic and inorganic)
 – Petroleum products
 – Salts
 – Formation of acid sulfate conditions
What happens to marine dredged material when placed in a subaerial environment and exposed to natural conditions?

Collected Simulated Dredged Material to a Depth of 25 cm

- **Embayments**: Wickford Cove and Greenwich Bay Spit, Submerged Mainland Beach, Bay Bottom, Mainland Cove

- **Coastal Lagoons**: Ninigret and Quonochontaug Ponds Flood Tidal Delta, Washover Fan, Lagoon Bottom, Mainland Cove
Material and Leachate Analysis

- Rainfall leachate analyzed for:
 - Conductivity
 - pH
 - Sulfate ppm

- Lab Analysis of Soil Material
 - Salinity
 - Incubation pH
 - PSD
 - Inorganic Sulfides (CRS + AVS)
 - Total Sulfur (XRF)
 - Pollutant Metals (XRF)
Leachate pH among high and low energy soil-landscape units
Oxidation of Sulfide Bearing Materials

- Produce extreme acidity
- Mobilization of Heavy Metals

Courtesy: Maggie Payne
Wickford Harbor leachate conductivity (salinity)

Leachate conductivity among high and low energy soil-landscape units
Implications: Even a small percentage of lagoon bottom material (5%) will affect the chemistry of the dredged materials and lower the pH < 4.0 within a year.
Summary and Conclusions

- Upland placement of fine textured materials quickly resulted in acidic conditions (< 2 months) and formation of acid sulfate soils

- Sulfide distribution is the controlling factor for creation of acid sulfate conditions

- As little as 5% of fine textured sulfidic materials (Lagoon Bottom) may influence the extent and duration of the development of acidic conditions

- Salts washout fairly quickly (within 10 months)

- Subaqueous soils should be managed accordingly and separately from one another due to the development of acid sulfate conditions
• *Zostera marina* (eelgrass) is a submerged flowering vascular plant

• Obtains nutrients from soil via roots
Why is Eelgrass Important?

- High biological productivity (200 to 600 gCm\(^{-2}\)yr\(^{-1}\)) *Mann, 2000
- Habitat for spawning fish, shellfish and benthic infauna
- Food source for waterfowl
- Trap sediment from water column
- Buffer wave activity

Courtesy: NOAA
Eelgrass Restoration

A lot of interest in restoring eelgrass because of significant losses in eelgrass habitat due to:

- Eutrophication
- Wasting disease
- Increasing water temperatures
- Other disturbances such as boat propellers

Success rates of restoration projects often low

- Poor site selection is often cited as a contributing factor

Table 10. Success of eelgrass restoration projects in the northeastern US. Sites include full-scale transplant efforts (hectares) and test-transplants of less than 0.01 ha per location (T)

<table>
<thead>
<tr>
<th>Location</th>
<th>Project</th>
<th>Sites attempted</th>
<th>Sites successful</th>
<th>Size</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maine</td>
<td>Wells NERR Project</td>
<td>2</td>
<td>0</td>
<td>T</td>
<td>Short et al. (1993)</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>NH Port Mitigation Project</td>
<td>5</td>
<td>2</td>
<td>2.52 ha</td>
<td>Short et al. (1995), This study</td>
</tr>
<tr>
<td></td>
<td>NH TERFS™ Method Development</td>
<td>6</td>
<td>2</td>
<td>T</td>
<td>Short et al. (2002)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>NOAA New Bedford Harbor Project</td>
<td>8</td>
<td>5</td>
<td>1.62 ha</td>
<td>Kopp & Short (2000), This study</td>
</tr>
<tr>
<td></td>
<td>EPA Boston Harbor Project</td>
<td>2</td>
<td>0</td>
<td>T</td>
<td>P. Colarusso & M. Chandler (pers. comm.)</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>RI Aqua Fund Project</td>
<td>6</td>
<td>1</td>
<td>T</td>
<td>Kopp et al. (1994)</td>
</tr>
<tr>
<td></td>
<td>NOAA ‘World Prodigy’ Mitigation</td>
<td>10</td>
<td>2</td>
<td>T</td>
<td>B. S. Kopp (unpubl. data)</td>
</tr>
<tr>
<td></td>
<td>RI DEM Narragansett Bay Project</td>
<td>2</td>
<td>0</td>
<td>T</td>
<td>Fonseca et al. (1997)</td>
</tr>
<tr>
<td></td>
<td>Save the Bay, Wickford Harbor</td>
<td>1</td>
<td>1</td>
<td>T</td>
<td>M. S. Fonseca (pers. comm.)</td>
</tr>
<tr>
<td></td>
<td>NOAA/NERR Seeding Project</td>
<td>3</td>
<td>1</td>
<td>T</td>
<td>Adamowicz (1994)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>Niantic River Pilot Eelgrass Restoration</td>
<td>1</td>
<td>1</td>
<td>0.04 ha</td>
<td>Richardson (pers. comm.)</td>
</tr>
<tr>
<td>New York</td>
<td>NY Sea Grant, Great South Bay Project</td>
<td>1</td>
<td>1<sup>a</sup></td>
<td>T</td>
<td>Churchill et al. (1978)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>NOAA/NMFS Raritan Bay Project</td>
<td>5</td>
<td>0</td>
<td>T</td>
<td>Reid et al. (1993)</td>
</tr>
</tbody>
</table>

^aSurvival monitored for less than 1 yr

Short et al./Mar Ecol Prog Ser 227 (2002) 253-267
Objectives

• Assess relationship between soil-landscape units and eelgrass distribution, growth, and transplant success in three coastal lagoons in southern Rhode Island

• Identify soil-landscape units most capable of supporting successful restoration projects
METHODS

• Point intercept vegetation transect method for eelgrass density

• TERF Transplant Method

• Leaf marking technique for determining growth

• Collected soil samples for physical and chemical properties

• Compared parameters across landscape unit types
Soil-landscape units group soils that have similar physical and chemical properties. These soil-landscape units offer a wide range in soil properties. These soil-landscape units are the most common units in coastal lagoon ecosystems.
TERF Transplant Method

- Developed by Dr. Fred Short of University of New Hampshire

- Harvest healthy eelgrass and tie shoots to the TERF frame (50 shoots per frame)

- Shoots were arranged so rhizomes within top 1 cm of soil

- Health of the eelgrass transplants determined by counting surviving shoots
Ninigret Pond Eelgrass Density

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average eelgrass cover (% ± S.D.) (n)</td>
<td>Average eelgrass cover (% ± S.D.) (n)</td>
</tr>
<tr>
<td>Flood Tidal Delta Slope</td>
<td>82 ± 14 (4) Silt loam</td>
<td>68 ± 2 (9) (^b) Very fine sandy loam</td>
</tr>
<tr>
<td>Lagoon Bottom</td>
<td>66 ± 37.9 (15) Silt loam</td>
<td>98 ± 1 (6) (^a) Silt loam</td>
</tr>
<tr>
<td>Flood Tidal Delta Flat</td>
<td>0 (2) Very fine sand</td>
<td>4 ± 1 (9) (^c) Fine sand</td>
</tr>
<tr>
<td>Washover Fan Flat</td>
<td>0 (4) Sand</td>
<td>1 ± 1 (9) (^c) Fine Sand</td>
</tr>
<tr>
<td>Washover Fan Slope</td>
<td>0 (2) Coarse sand</td>
<td>1 ± 3 (9) (^c) Fine sand</td>
</tr>
</tbody>
</table>

\(^a\) Indicates significant difference from Bradley (2001), \(^b\) indicates significant difference from Pruett (2010), \(^c\) indicates significant difference from both Bradley (2001) and Pruett (2010).
<table>
<thead>
<tr>
<th>Landscape Unit</th>
<th>n</th>
<th>Average Eelgrass Cover (%)</th>
<th>USDA Soil Texture Classification Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potter Pond</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagoon Bottom</td>
<td>9</td>
<td>100 0^a</td>
<td>silt loam</td>
</tr>
<tr>
<td>Flood Tidal Delta-Slope</td>
<td>9</td>
<td>92 9^a</td>
<td>very fine sandy loam</td>
</tr>
<tr>
<td>Flood Tidal Delta-Flat</td>
<td>9</td>
<td>66 23^c</td>
<td>loamy sand to fine sand</td>
</tr>
<tr>
<td>Washover Fan-Slope</td>
<td>9</td>
<td>80 7^b</td>
<td>loam to fine sandy loam</td>
</tr>
<tr>
<td>Washover Fan-Flat</td>
<td>6</td>
<td>4 7^d</td>
<td>sand</td>
</tr>
<tr>
<td>Quonochontaug Pond</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagoon Bottom</td>
<td>9</td>
<td>16 31^bc</td>
<td>Silt loam</td>
</tr>
<tr>
<td>Flood Tidal Delta-Slope</td>
<td>6</td>
<td>33 35^a</td>
<td>loamy sand to fine sand</td>
</tr>
<tr>
<td>Flood Tidal Delta-Flat</td>
<td>6</td>
<td>11 15^bc</td>
<td>loamy sand to fine sand</td>
</tr>
<tr>
<td>Washover Fan-Slope</td>
<td>9</td>
<td>3 3^b</td>
<td>sand to coarse sand</td>
</tr>
<tr>
<td>Washover Fan-Flat</td>
<td>9</td>
<td>8 20^c</td>
<td>sand to coarse sand</td>
</tr>
</tbody>
</table>
Ninigret Pond:
Eelgrass Distribution and Soil Properties

<table>
<thead>
<tr>
<th>Variable</th>
<th>High (mean se)</th>
<th>Moderate</th>
<th>Low (mean se)</th>
<th>No (mean se)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>> 60%</td>
<td>60 to 20%</td>
<td>20 to 1%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>TOC (%)</td>
<td>2.7 0.9</td>
<td>-</td>
<td>0.4 0.1</td>
<td>0.5 0.1</td>
<td>0.04</td>
</tr>
<tr>
<td>CaCO₃ (%)</td>
<td>4.0 1.2</td>
<td>-</td>
<td>1.0 0.1</td>
<td>0.9 0.2</td>
<td>0.05</td>
</tr>
<tr>
<td>Salinity (mS)</td>
<td>5.3 0.4ᵃ</td>
<td>-</td>
<td>3.1 0.2ᵇ</td>
<td>3.1 0.2ᵇ</td>
<td>0.0032</td>
</tr>
<tr>
<td>pH</td>
<td>8.1 0.1</td>
<td>-</td>
<td>7.9 0.1</td>
<td>7.9 0.1</td>
<td>0.18</td>
</tr>
<tr>
<td>Sand (%)</td>
<td>39.2 13.7ᵃ</td>
<td>-</td>
<td>94.0 1.9ᵇ</td>
<td>95.9 1.2ᵇ</td>
<td>0.0019</td>
</tr>
<tr>
<td>Silt (%)</td>
<td>48.8 9.1ᵃ</td>
<td>-</td>
<td>3.8 1.7ᵇ</td>
<td>3.2 1.3ᵇ</td>
<td>0.0004</td>
</tr>
<tr>
<td>Clay (%)</td>
<td>12.1 5.2</td>
<td>-</td>
<td>2.4 0.8</td>
<td>1.2 0.7</td>
<td>0.10</td>
</tr>
<tr>
<td>AVS (ug g⁻¹)</td>
<td>38.5 5.5ᵃ</td>
<td>-</td>
<td>2.9 0.7ᵇ</td>
<td>2.0 0.3ᵇ</td>
<td><0.0001</td>
</tr>
<tr>
<td>CRS (ug g⁻¹)</td>
<td>305.3 122.0</td>
<td>-</td>
<td>52.6 22.8</td>
<td>61.9 23.1</td>
<td>0.09</td>
</tr>
<tr>
<td>TS (ug g⁻¹)</td>
<td>343.8 121.9</td>
<td>-</td>
<td>55.5 23.2</td>
<td>63.9 23.3</td>
<td>0.05</td>
</tr>
<tr>
<td>n=</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Soil Properties and Eelgrass Distribution

• In Ninigret Pond:
 – Landscape units with high eelgrass cover (>60%) had:
 • High soil salinities
 • High silt contents
 • High acid-volatile sulfide contents
 • Low sand contents

• In Potter Pond:
 – Most landscapes (11 out of 14) had high eelgrass cover (>60%)
 – Each of the 3 remaining transects split between Moderate cover (20 to 60%), Low cover (1 to 20%), and No cover (0%).
 – Made statistical comparisons between cover classes impossible but same trends were seen as in Ninigret Pond (salinity, silt, and AVS higher in high classes vs. Moderate, Low, No classes)

• In Quonochontaug Pond:
 – Very little eelgrass so no significant differences between eelgrass cover classes
Why lower success in LB units?

- These units had higher SOC and total sulfide contents
- SOC levels >2% have been shown to deter SAV establishment.
- LB units had 6% SOC while FTDS and WFS had 2%.
Production Measurements Results

<table>
<thead>
<tr>
<th></th>
<th>Ninigret Pond</th>
<th></th>
<th></th>
<th></th>
<th>Potter Pond</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WFS</td>
<td>FTDS</td>
<td>LB</td>
<td>p</td>
<td>WFS</td>
<td>FTDS</td>
<td>LB</td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early Summer</td>
<td></td>
</tr>
<tr>
<td>Shoot Growth Rate</td>
<td>49.4<sup>a</sup></td>
<td>13.8<sup>b</sup></td>
<td>50.0<sup>a</sup></td>
<td>0.006</td>
<td>19.9<sup>b</sup></td>
<td>14.7<sup>b</sup></td>
<td>31.8<sup>a</sup></td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mg dw shoot<sup>-1</sup> day<sup>-1</sup>)</td>
<td></td>
</tr>
<tr>
<td>3<sup>rd</sup> Leaf Length (cm)</td>
<td>72.1<sup>b</sup></td>
<td>57.3<sup>b</sup></td>
<td>122.9<sup>a</sup></td>
<td><0.0001</td>
<td>77.1<sup>c</sup></td>
<td>45.8<sup>b</sup></td>
<td>108.0<sup>a</sup></td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoot:Root ratio</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mg/mg dw)</td>
<td></td>
</tr>
<tr>
<td>Late Summer</td>
<td></td>
</tr>
<tr>
<td>Shoot Growth Rate</td>
<td>7.8<sup>b</sup></td>
<td>10.8<sup>a</sup></td>
<td>13.8<sup>a</sup></td>
<td>0.029</td>
<td>11.8<sup>a</sup></td>
<td>5.5<sup>b</sup></td>
<td>13.6<sup>a</sup></td>
<td>0.0002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mg dw shoot<sup>-1</sup> day<sup>-1</sup>)</td>
<td></td>
</tr>
<tr>
<td>3<sup>rd</sup> Leaf Length (cm)</td>
<td>41.6<sup>b</sup></td>
<td>43.5<sup>b</sup></td>
<td>67.7<sup>a</sup></td>
<td><0.0001</td>
<td>56.4<sup>b</sup></td>
<td>45.1<sup>c</sup></td>
<td>67.9<sup>a</sup></td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoot:Root ratio</td>
<td>4.6<sup>b</sup></td>
<td>3.9<sup>b</sup></td>
<td>7.0<sup>a</sup></td>
<td>0.0002</td>
<td>5.5</td>
<td>3.7</td>
<td>5.3</td>
<td>0.124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mg/mg dw)</td>
<td></td>
</tr>
<tr>
<td>Water Depth (m)</td>
<td>1.4</td>
<td>1.4</td>
<td>1.9</td>
<td></td>
<td>1.1</td>
<td>0.8</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eelgrass allocates growth to aboveground biomass from belowground biomass under low light and high SOM conditions.

Higher growth rates in LB units in Ninigret Pond in late summer corresponded with higher shoot:root ratios.
Summary of Eelgrass Data

• Percent eelgrass cover varies by soil-landscape unit

• Lagoon Bottom and Flood Tidal Delta-Slope units contained highest eelgrass cover

• Lagoon Bottom units had highest growth rates

• High soil salinities, silt contents, and AVS contents were correlated with high eelgrass cover

• Landscape units that supported the most eelgrass and the highest aboveground growth rates (LB) had lower success rates for transplantation
 – May be due to reducing conditions or high SOC stressing transplanted eelgrass
Conclusions and Future Work

• Soil landscape unit type is important to eelgrass distribution, growth, and transplant success

• Transplant data suggests that the best units for transplant success included:
 – Flood Tidal Delta Slope
 – Washover Fan Slope

• Need to study the success rate of different transplant methods on soil landscape units
Subaqueous Soils and Carbon Pools

- Global warming concerns have sparked interest in investigating the global C cycle
- Upland and wetland SOC pools are often important carbon sinks
- Subaqueous soils have been largely overlooked in soil organic carbon pool studies
- More precise estimates of C sinks and sources are needed to better understand the global C cycle
Objectives

• Explore carbon storage and soil-landscape unit relationship

• Do SOC pools differ among soil type?

• Do subaqueous soils in Rhode Island coastal lagoons contain significant SOC pools?
Study Area

Landscape unit

<table>
<thead>
<tr>
<th>Landscape unit</th>
<th>NP</th>
<th>PJP</th>
<th>QP</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTDF</td>
<td>43 (7%)</td>
<td>126 (19%)</td>
<td>54 (18%)</td>
</tr>
<tr>
<td>FTDS</td>
<td>*</td>
<td>11 (2%)</td>
<td>*</td>
</tr>
<tr>
<td>WFF</td>
<td>135 (15%)</td>
<td>*</td>
<td>18 (6%)</td>
</tr>
<tr>
<td>WFS</td>
<td>25 (3%)</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>SMB</td>
<td>71 (8%)</td>
<td>40 (7%)</td>
<td>27 (9%)</td>
</tr>
<tr>
<td>MC</td>
<td>18 (2%)</td>
<td>39 (6%)</td>
<td>*</td>
</tr>
<tr>
<td>LB</td>
<td>289 (43%)</td>
<td>267 (41%)</td>
<td>162 (52%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area of Pond (ha)</th>
<th>NP</th>
<th>PJP</th>
<th>QP</th>
</tr>
</thead>
<tbody>
<tr>
<td>678</td>
<td>650</td>
<td>312</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percentage of Area</th>
<th>NP</th>
<th>PJP</th>
<th>QP</th>
</tr>
</thead>
<tbody>
<tr>
<td>78%</td>
<td>75%</td>
<td>85%</td>
<td></td>
</tr>
</tbody>
</table>
High Energy (WFF) Results

Low Energy (LB) Results

SOC (%)

Pedon Depth (cm)

QPWFF

NPWFF1

NPWFF2

NPLB

QPLB

PJLB

Low Energy (LB) Results

SOC (%)

Pedon Depth (cm)

NPLB

QPLB

PJLB

Results
• MC units had highest SOC pools and highest variability
 - Due to buried O horizons and one organic soil (Wassist)
• LB units had higher SOC pools than the “Flat” units
• Similar relationships seen when each of the coastal lagoons are assessed individually
- Sulfiwassents have fine textures and presence of sulfides
- Sulfiwassents make up the majority of each coastal lagoons studied (> 50%)
- Similar relationships were seen when ponds were assessed individually
Mean SOC Pools in Select Soil Subgroups

- Subaerial data from forested upland and wetland soils (Ricker, 2010 and Davis, 2004)
- SOC pools in subaqueous subgroups are comparable to forested soils in southern New England
Soil Organic Carbon Conclusions

• SOC pools significantly differed by soil great group and landscape unit

• Type of depositional environment and presence of buried O horizons important for SOC pools

• Subaqueous SOC pools are comparable to regional and national averages for subaerial SOC pools

• Should be included in global and regional estimates of soil organic carbon pools

• Sequestration rates need to be studied in these subaqueous soils.
Heavy Metals and Subaqueous Soils

• What is the spatial distribution of surficial metal concentrations in RI estuaries?

• Do metal concentrations differ by soil type?

• Are specific soil types more likely to contain metal pollution?
Methods

- Analyzed 91 surface soil samples for heavy metals
- Dried and homogenized samples
- Niton XL3t XRF
- Pb, Zn, As, Cu, and Cr
- Classified soils and separated by great group and soil series
- Compare to DEM background levels and NOAA limits for biological effects
Results

• For As, Cu, and Cr majority of concentrations < LOD

• Pb and Zn most prevalent metals in high concentrations

• Possible Sources:
 – Atmospheric deposition (Pb and Zn)
 – Surface water runoff (Pb and Zn)
 – Incinerator waste (Pb and Zn)
 – Gasoline (Pb usage stopped in 70’s)
 – Car tires (Zn)
- Widespread distribution of Pb and Zn above background levels across all estuaries studied

- Pb concentrations highest near freshwater/surface-water inputs and lowest near tidal inlet

- Proximity to potential sources and tidal inlets important to spatial distribution of metal conc.

- Same trends for Zn
- Hydro and Sulfiwassents contain greater fine materials, SOC contents, and sulfides which bind metals
Conclusions

• Pb and Zn were the most common metals >LOD, the majority of samples were <LOD for Cu, Cr, and As

• Proximity to potential sources and tidal inlets, and soil physical and chemical properties are important to the spatial distribution of metal concentrations in estuaries

• Pb and Zn differed by soil great group, due to the differing physical and chemical properties of the soil types studied

• It is possible to create an interpretations map based on this data that groups soils with the most potential to accumulate metal pollution
Subaqueous Soil and Shellfish Growth

• **Objective**
 – Estimate shellfish growth on different soil landscape units
 – Eastern Oyster *Crassostrea virginica*
 – Quahog (*Mercenaria mercenaria*)

• **What affects shellfish growth?**
 – Seston (Food availability)
 – Flow Rates
 – Temperature

• **Soils as a surrogate for shellfish growth**
 – Able to map out areas
Shellfish Growth Experiment

- **Small scale aquaculture**
 - Ninigret Pond
 - Quonochontaug Pond

- **Landscape units**
 - Washover Fan
 - Washover Fan Slope
 - Lagoon Bottom
 - Mainland Cove
 - Submerged Mainland Beach

- **Soil Characterization**
 - Vibracores taken at each site
 - Described and analyzed

- **Oysters**
 - Grow-out in trays (1m x 1m)
 - 3 trays per site

- **Quahogs**
 - Grown in soil (2 x 2 meter plots)
 - Covered with predator netting

- **Sampling**
 - Growth measured at end of 15 week study period
 - 2 seasons
 - Oysters measured by long axis
 - Quahogs measured by hinge width

- **Water Quality**
 - DO, Salinity, Temperature
 - TSS, Chlorophyll a
Oyster Growth Experiment

June 2008 Oysters put out in Ninigret Pond

- ~ 11,000 oysters mean size of 3.0 cm
- 4 Liters of biovolume were placed into 24 grow-out bags
- 1 Liter of biovolume = 110 - 120 oysters
- 3 Oyster trays per site

Sampling in October 2009

30 Oysters random sampled from each tray (90 per site) and measured across the long axis
Site Characteristics

<table>
<thead>
<tr>
<th>Site</th>
<th>Water Depth (m)</th>
<th>Surface Texture</th>
<th>Subgroup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ninigret Pond</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WFS</td>
<td>0.96</td>
<td>loamy fine sand</td>
<td>Typic Fluviwassent</td>
</tr>
<tr>
<td>WF</td>
<td>1.04</td>
<td>fine sand</td>
<td>Sulfic Psammowassent</td>
</tr>
<tr>
<td>MC</td>
<td>1.00</td>
<td>fine sand</td>
<td>Haplic Sulfiwassent</td>
</tr>
<tr>
<td>LB</td>
<td>1.00</td>
<td>silt loam</td>
<td>Typic Sulfiwassent</td>
</tr>
<tr>
<td>Quonochontaug Pond</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WFS</td>
<td>1.49</td>
<td>sand</td>
<td>Typic Psammowassent</td>
</tr>
<tr>
<td>WF</td>
<td>0.79</td>
<td>coarse sand</td>
<td>Fluventic Psammowassent</td>
</tr>
<tr>
<td>SMB</td>
<td>0.99</td>
<td>sand</td>
<td>Aeric Haplowassent</td>
</tr>
<tr>
<td>LB</td>
<td>3.19</td>
<td>silt loam</td>
<td>Typic Sulfiwassent</td>
</tr>
</tbody>
</table>
Different letters indicate significant differences. Note slow growth on Lagoon Bottom soils
Oyster Growth Analysis

Percentage of Legal Sized Oysters

<table>
<thead>
<tr>
<th>Aquaculture Site ID</th>
<th>October 2008</th>
<th>June 2009</th>
<th>October 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% ≥ 76 mm</td>
<td>% ≥ 76 mm</td>
<td>% ≥ 76 mm</td>
</tr>
<tr>
<td>NWFS</td>
<td>0</td>
<td>20</td>
<td>73†</td>
</tr>
<tr>
<td>NWF</td>
<td>0</td>
<td>30</td>
<td>44</td>
</tr>
<tr>
<td>NMC</td>
<td>0</td>
<td>13</td>
<td>45</td>
</tr>
<tr>
<td>NLB</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>QWFS</td>
<td>3</td>
<td>19</td>
<td>62</td>
</tr>
<tr>
<td>QWF</td>
<td>1</td>
<td>24</td>
<td>62</td>
</tr>
<tr>
<td>QSMB</td>
<td>2</td>
<td>16</td>
<td>61</td>
</tr>
<tr>
<td>QLB</td>
<td>N/A</td>
<td>3</td>
<td>24</td>
</tr>
</tbody>
</table>

Initial shell sizes = 30 mm

† vandalism, July 2009 unknown lost, number based on 1 oyster tray
Grain Size of Surface Horizon Predicting Oyster Growth

\[y = 0.7192x + 33.937 \]

\[R^2 = 0.85 \]
Shellfish Summary

- Oyster Growth (both ponds) 31 mm/year
- Shellfish grew faster on coarser textured soils
 - Increased growth rates
 - Greater biovolume
 - Greater survival
- Grain size of surface horizon predictor of oyster growth ($R^2 = 0.85$)
- Landscape units containing increases in sand (Washover Fan, Submerged Mainland Beach) more suitable for shellfish aquaculture
- Existing soil surveys can provide managers with a tool for siting future aquaculture farms
Conclusions

• The systematic distribution of soil types in a soil survey are relative to eelgrass distribution, growth, and transplant success, variations in SOC pools, and accumulation of heavy metals.

• Once included in subaqueous soil surveys, these tools will be valuable reference information for coastal resource managers, policy makers, and research scientists.