Managing Storm Water to Protect Drinking Water

Communities Protecting Drinking Water Sources
December 1, 2011

Lorraine Joubert
URI Nonpoint Education for Municipal Officials
University of Rhode Island Cooperative Extension
Nonpoint Education for Municipal Officials

RI NEMO provides training and technical tools to help local decision makers manage impacts of changing land use on water resources.

RI NEMO is part of the URI Cooperative Extension Water Quality Program and a member of the National NEMO network.
Acknowledgments

RI NEMO is funded by the RI Department of Health, Office of Drinking Water to help municipalities protect drinking water sources, and by the RI Department of Transportation as part of RIDOT’s Storm water management program.
The Stormwater problem and a few useful indicators to manage it
In R.I. 22% of surface waters are not meeting fishable swimmable standards due to stormwater pollution. - RIDEM

In recent years, up to 75% of annual beach closures were traced to stormwater, with the remainder due to CSOs. - RI Health
Impacts of land use on hydrology

Natural Landscape
- Low runoff
- High recharge
- Healthy summer stream flow
- Natural pollutant treatment

Developed
- High runoff volume
- Flooding
- Low stream flow
- Bypass natural treatment
Impervious Surface and Runoff Volume

Nutrient inputs, wetland impacts

Water Quantity & Quality Impacts
Nutrients – too much of a good thing?
Phosphorus overfertilizes fresh water

Organic matter from aquatic plants affects taste & odor of drinking water

Algae and aquatic plants limit recreational use & aquatic habitat.
In unsewered communities, OWTS are often a major source of nitrogen to groundwater.
Nitrogen concentration (mg/l) is a concern in groundwater supplies

Major pollution sources to wells:

- Agricultural fertilizers and animal wastes.
- Densely sited septic systems.
- Septic systems and other sources within inner protected well radius (100 ft private wells, 200-400 ft public wells).
How much nitrogen is too much?

0.5 mg/l or less
- Natural background in RI groundwater in forested areas.
- Healthy shellfishing habitat at 0.3 mg/l or less.

1 mg/l
- Sign of impact to groundwater from waste water or fertilizer. (USGS,2000)
- Freshwater EPA guideline for Total N: lakes 0.32 mg/l, rivers 0.71 mg/l

5 mg/l
- Public drinking water action level. Triggers additional monitoring.
- Standard adopted by some towns.

10 mg/l
- Drinking water standard.
- Acute health effects to infants. With “blue baby syndrome” nitrate replaces oxygen in blood.
- Suspected risk of cancer other health effects.

Increasing nitrogen
Increasing pollution risk
LID Approach: Avoid, reduce, manage stormwater impacts
Managing Impacts through Density?
A case study
Existing conditions

Soils

Wetland perimeter

46 acres total

10 acres wetland 22%

36 acres buildable 77%
18 lots, 80,000 sf
Avg lot size 2.5 acres
6.5% Impervious
Proposed Cluster Subdivision

- 18 lots
- Avg lot size 1.4 acres
- Open space 27 acres
- 6.5% Impervious
- Estimated 3.6 mg/l nitrate concentration in built area
If wetlands were included in the density calculation:
24 lots, average 61,000 sf / lot
7.8 impervious
5-6 mg/l Nitrate concentration estimated based on 18-24” recharge
If the site was 40% wetland and included in density calculation:
24 lots, average 47,400 sf / lot
10% impervious
6-7 mg/l Nitrate concentration estimated at 18-24” recharge; 11mg/l w/ 10”
Final thoughts
Wetlands, hydric soils and buffers are critical treatment zones. Bacteria and Phosphorus removal in unsaturated soil. Potential for denitrification in high water table soils: $\text{NO}_3 \rightarrow \text{N}_2\text{O} \rightarrow \text{N}_2$. Wetlands are excluded from calculation of impervious area stormwater treatment area.
WHAT A HEROIC FIGURE!

HE QUIT WATERING HIS LAWN
SAVED OUR WATER SUPPLY
BROWN IS THE NEW "GREEN" LAWN STANDARD.

GEE, A REAL LOW-Maintenance GUY!!

DON BOUSQUET
Thank you for your attention!

www.uri.edu/ce/wq
www.ristormwatersolutions.org

Contacts:
Lorraine Joubert Tel: 874-2138 ljoubert@uri.edu
Lisa Hollister Tel: 874-5687 lhollister@uri.edu
University of Rhode Island, Natural Resources Science