The fisheries program at the University of Rhode Island, begun in the late 1960s and administered by the Department of Fisheries, Animal and Veterinary Sciences (FAVS), is one of the oldest fisheries programs in the northeastern United States. Students in our programs have come from throughout the United States and from many foreign countries. Faculty members in the program have research interests in fishing gear performance, bycatch reduction, fish population dynamics, multi-species fisheries management and marine sanctuaries, among many others.

Career Options: Commercial fisheries, fisheries scientist, fisheries observer, fisheries gear specialist, fisheries manager in governmental agencies, fisheries conservation specialist in governmental agencies or NGOs, fisheries ecologist, graduate studies and research in fisheries related topics.

Transfer out of UC: Must have completed at least 24 credits, minimum GPA of 2.00, and received permission from the UC major advisor. Completion of introductory fisheries and required science courses is strongly recommended. Must select advisor from departmental fisheries faculty.

The following is an example of the typical course schedule for the first 4 semesters for a student majoring in Aquaculture and Fisheries Technology with a Fisheries emphasis. These are recommended course selections for Fisheries, Animal and Veterinary Science majors in University College; there maybe variation based on course availability and schedule restraints. Some classes are not offered every semester. It is important to plan ahead and consult with your advisor to allow yourself time to enroll in the classes you wish to take.

Semester I (Fall)
- URI 101 Freshman at URI 1
- AFS 101 Freshman Fisheries/Aquacult. 1
- AFS 120 Intro. to Fisheries 3
- AFS 121 Intro. to Fisheries Lab 1
- BIO 101 Principles of Biology 1 4
- GEG 100 3
- MTH 111 Precalculus or 131 Calculus 3

Total credits: 16

Semester II (Spring)
- AFS 102 Introductory Aquaculture 3
- BIO 102 Principles of Biology II 4
- CHM 101 Chemistry I (or 103) 3
- CHM 102 Chemistry I Lab (or 105) 1
- WRT 104 Composition 3
- REN 105 Resource Economics 3

Total credits: 17

Semester III (Fall)
- NRS 100 Natural Resource Cons. 3
- AFS 210 Intro. Marine Environment 3
- AFS 211 Intro. Marine Env. Lab 1
- COM 100 Oral Communication 3
- Basic Science Elective 3
- General Ed. (Cat. A, L, or F) 3

Total credits: 16

Semester IV (Spring)
- CHM 112, 114 Chemistry II, Lab or CHM 124, 126 Organic Chem., Lab 4
- AFS 315 Living Aquatic Resources 3
- AFS 316 Living Aquat. Resources Lab 1
- Supporting Elective 3
- Supporting Elective 3
- General Ed. (Cat. A, L, or F) 3

Total credits: 17

General Education (36 credits): All Category MQ (Mathematical & Quantitative Reasoning), N (Natural Sciences), and S (Social Sciences) General Education requirements (15 cr.) are satisfied by courses taken as part of the major. Thus, to satisfy URI’s General Education requirements, Aquaculture and Fisheries Science students should take COM 100/COM 110, and only 15 credits of General Education courses from Category A (Fine Arts & Literature), L (Letters), or F (Foreign Language/Culture). See the URI Course Catalog (also on the web at http://www.uri.edu/catalog/cataloghtml/index.html) for a listing of all General Education courses.
Introductory Professional Courses (9 credits):
- NRS 100 Natural Resource Conservation
- AFS 102 Introductory Aquaculture
- AFS 120, 121 Introduction to Fisheries, Lab
- REN 105 Resource Economics

Basic Sciences (28-31 credits)- 6 credits satisfy the N requirements and 3 the MQ requirements):
- BIO 101 Principles of Biology I
- BIO 102 Principles of Biology II
- CHM 101, 102 General Chemistry I, Lab or CHM 103,105 Introductory Chemistry, Lab
- CHM 112, 114 General Chemistry II, Lab
- MTH 111 Precalculus or MTH 131 Calculus

And select three of the following courses:
- BIO 205 Animal Diversity
- BIO 262 Introductory Ecology
- CHM 226, 227, 228 Organic Chemistry I, II, Lab
- CSC 201 Introduction to Computer Programming
- MIC 211 Introductory Microbiology
- MTH 132 Calculus II
- PHY 109 Introduction to Physics or PHY 111, 112 General Physics I, Lab
- STA 308 Statistics

Core Courses (14 credits):
- AFS 210 Introduction to the Marine Environment
- AFS 211 Introduction to the Marine Environment Lab
- AFS 315 Living Aquatic Resources
- AFS 316 Living Aquatic Resources Lab
- AFS 321 World Fishing Methods
- AFS 322

Concentration (24 credits)
Select from the following courses:
- AFS 315 Living Aquatic Resources
- AFS 316 Living Aquatic Resources Lab
- AFS 321 World Fishing Methods
- AFS 341 Marine Propulsion Systems
- AFS 342 Marine Auxiliary Systems
- AFS 343 Vessel Repair and Maintenance
- AFS 352 General Genetics
- AFS 362 Crustacean Aquaculture
- AFS 390 Vessel Operations
- AFS 391 Special Problems & Independent Study
- AFS 392 Special Problems & Independent Study
- AFS 415 Fishery Science
- AFS 421 Design of Fish Capture Systems
- AFS 425 Aquaculture & the Environment
- AFS 432 Marine Finfish Aquaculture
- AFS 433 Research Diving Methods
- AFS 476 Genetics of Fish
- AFS 481 Shellfish Aquaculture Lab
- AFS 482
- AFS 483 Salmonid Aquaculture
- AFS 486 Applied Physiology of Fish
AFS 491 Special Projects
AFS 492 Special Projects
AFS 510 Applied Problems in Marine Fishery Ecology
AFS 521 Evaluation of Fish Capture System
AFS 531 Fisheries Stock Assessment
AFS 532 Experiment Design
AFS 534 Animal Virology
AFS 536 Virology Lab
AFS 538 Epidem. Viral & Rickettsial Diseases
AFS 581 Topics in Molluscan Aquaculture
AFS 584 Advanced Aquaculture Systems
AFS 586 Fish Nutrition

Supporting Electives (30-36 credits):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFS 201</td>
<td>Shellfish Aquaculture</td>
<td>3</td>
</tr>
<tr>
<td>AFS 202</td>
<td>Finfish Aquaculture</td>
<td>3</td>
</tr>
<tr>
<td>AFS 210</td>
<td>Introduction to the Marine Environment</td>
<td>3</td>
</tr>
<tr>
<td>AFS 211</td>
<td>Introduction for the Marine Environment Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>AFS 270</td>
<td>Basic Scuba Diving in Science and Technology</td>
<td>3</td>
</tr>
<tr>
<td>AFS 290</td>
<td>Small Boats: Their Equipment and Operation</td>
<td>3</td>
</tr>
<tr>
<td>AVS 212</td>
<td>Feeds and Feeding</td>
<td>3</td>
</tr>
<tr>
<td>AVS 372</td>
<td>Introduction Endocrinology</td>
<td>3</td>
</tr>
<tr>
<td>BIO 327</td>
<td>Vertebrate Histology</td>
<td>3</td>
</tr>
<tr>
<td>BIO 345</td>
<td>Marine Environmental Physiology</td>
<td>4</td>
</tr>
<tr>
<td>BIO 418</td>
<td>Marine Botany</td>
<td>3</td>
</tr>
<tr>
<td>EVS 366</td>
<td>Communicating Environmental Research and Outreach</td>
<td>2</td>
</tr>
<tr>
<td>CVE 315</td>
<td>Surveying I</td>
<td>3</td>
</tr>
<tr>
<td>MAF 220</td>
<td>Introduction to Marine and Coastal Law</td>
<td>3</td>
</tr>
<tr>
<td>MAF 312</td>
<td>The Politics of the Ocean</td>
<td>3</td>
</tr>
<tr>
<td>MAF 330</td>
<td>World Fishing</td>
<td>3</td>
</tr>
<tr>
<td>MAF 511</td>
<td>Ocean Uses and Marine Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MAF 523</td>
<td>Fisheries Law and Management</td>
<td>3</td>
</tr>
<tr>
<td>MGT 480</td>
<td>Small Business Management</td>
<td>3</td>
</tr>
<tr>
<td>MGT 482</td>
<td>Entrepreneurship</td>
<td>3</td>
</tr>
<tr>
<td>NFS 207</td>
<td>General Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NRS 212</td>
<td>Introduction to Soil Science</td>
<td>3</td>
</tr>
<tr>
<td>NRS 305</td>
<td>Principles of Wildlife Ecology and Management</td>
<td>3</td>
</tr>
<tr>
<td>NRS 402</td>
<td>Wildlife Biometrics</td>
<td>3</td>
</tr>
<tr>
<td>NRS 409</td>
<td>Concepts in GIS</td>
<td>3</td>
</tr>
<tr>
<td>NRS 532</td>
<td>Conservation Biology and Resource Economics</td>
<td>3</td>
</tr>
<tr>
<td>RDE 486</td>
<td>Internship in Agriculture and Extension Education</td>
<td>1-6</td>
</tr>
<tr>
<td>REN 310</td>
<td>Economics for Environmental Resource Management & Policy</td>
<td>3</td>
</tr>
<tr>
<td>REN 325</td>
<td>Planning and Mapping a Small Natural Resource Firm</td>
<td>3</td>
</tr>
<tr>
<td>REN 410</td>
<td>Fish and Wildlife Economics</td>
<td>3</td>
</tr>
<tr>
<td>REN 435</td>
<td>Aquaculture Economics</td>
<td>3</td>
</tr>
<tr>
<td>REN 514</td>
<td>Economics of Marine Resources</td>
<td>3</td>
</tr>
<tr>
<td>STA 409</td>
<td>Statistical Methods in Research I</td>
<td>3</td>
</tr>
<tr>
<td>STA 412</td>
<td>Statistical Methods in Research II</td>
<td>3</td>
</tr>
</tbody>
</table>

Free Electives (12 credits):

You may take any 12 credits of your choice.